RingSampler: GNN sampling on large-scale graphs
with io_uring

Qixuan Chen
taliac@bu.edu

Boston University

Melissa Martinez
melimtz@bu.edu
Boston University

ABSTRACT

Neighborhood sampling is a critical computation step in
graph learning with Graph Neural Networks (GNNs), often
accounting for the majority of the training time. To mitigate
this bottleneck and scale training to very large graphs, exist-
ing approaches offload the sampling computation to GPUs or
computational storage, such as SmartSSDs. Given the ubig-
uity of multi-core CPUs and high-throughput SSDs, we inves-
tigate a simpler design that performs CPU-based sampling,
making GPU resources fully available to the aggregation
stage of training instead. We propose RINGSAMPLER, a new
GNN sampling system that leverages io_uring to support
efficient training of billion-edge graphs on a single machine.
RINGSAMPLER parallelizes sampling by transparently assign-
ing mini-batches to threads and effectively overlapping com-
putation with I/O operations. Our results show that RINGSAM-
PLER significantly outperforms SmartSSD-based sampling
on large graphs and is competitive with GPU-accelerated
approaches on graphs that fit in main memory.

CCS CONCEPTS

« Computing methodologies — Neural networks; « In-
formation systems — Computing platforms.

KEYWORDS
Graph Neural Networks; io_uring; Neighborhood sampling

ACM Reference Format:
Qixuan Chen, Yuhang Song, Melissa Martinez, and Vasiliki Kalavri.

2025. RingSampler: GNN sampling on large-scale graphs with io_uring.

In 17th ACM Workshop on Hot Topics in Storage and File Systems

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

HotStorage °25, July 10-11, 2025, Boston, MA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1947-9/2025/07...$15.00
https://doi.org/10.1145/3736548.3737829

Yuhang Song
yuhangs@bu.edu
Boston University

Vasiliki Kalavri
vkalavri@bu.edu

Boston University

(HotStorage °25), July 10-11, 2025, Boston, MA, USA. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3736548.3737829

1 INTRODUCTION

Graph Neural Networks (GNNs) [38] have been extensively
used in machine learning tasks that require learning from
graph-structured data. GNNs capture relationships and de-
pendencies between entities in a network, making them
suitable for applications such as as node classification, link
prediction, and recommendation systems [11, 19, 36, 37].

Neighborhood sampling [2, 10, 13] can be a significant bot-
tleneck in graph learning. Empirical studies have shown that
it often accounts for more than 50% of the overall training
time, and in some cases, exceeds 90% of the end-to-end exe-
cution time. This overhead is primarily due to the irregular
memory access patterns and poor data locality inherent in
the sampling process, which introduce substantial delays
during data preparation. [9, 15, 17, 24, 25] As a result, vari-
ous sampling acceleration approaches have been proposed.
Nextdoor [15] and gSampler [9] offload sampling to GPUs,
however, they are restricted by the capacity of GPU memory.
Even for small graphs, the sampling computation competes
for GPU resources with the aggregation stage, potentially
increasing end-to-end training time. Ginex [25] and Mar-
iusGNN [30] support training on large graphs by loading
edge partitions from SSDs to memory but they suffer from
unnecessary I/O [29]. To avoid the data transfer overhead,
FlashGNN [23], SmartSAGE [20], and BeaconGNN [32] push
the sampling computation to the SSD controller.

In this paper, we propose RINGSAMPLER, a new GNN sam-
pling system that leverages io_uring to effectively address
the sampling bottleneck and fully utilize modern multi-core
CPUs and SSDs. RINGSAMPLER supports neighborhood sam-
pling on larger-than memory graphs, without requiring any
specialized hardware. We make the following contributions:

e We design and implement RINGSAMPLER, an io_uring-
based GNN sampling system tailored for multi-core CPUs

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3736548.3737829
https://doi.org/10.1145/3736548.3737829

HotStorage ’25, July 10-11, 2025, Boston, MA, USA

and SSDs. RINGSAMPLER leverages an index-based sam-
pling mechanism to avoid unnecessary data movement,
retrieving only the sampled neighbors from disk.

e We implement a multi-threaded, asynchronous sampling
engine that fully utilizes multi-core CPUs and achieves
non-blocking execution by overlapping I/O preparation
and completion.

e We conduct a comprehensive experimental evaluation,
across multiple datasets and sampling systems, including
in-memory, GPU-based and SmartSSD-based baselines.

When compared to out-of-core systems, RINGSAMPLER ex-
hibits significant benefits, achieving up to 52x lower sam-
pling time per epoch. Our results show that RINGSAMPLER is
competitive even against in-memory and GPU-accelerated
approaches, while it can also be suitable for on-demand sam-
pling in near-real-time GNN serving settings. We have re-

leased our code and experiments for public access’.

2 BACKGROUND AND RELATED WORK

In this section, we provide background on GNN sampling
and discuss existing GNN sampling approaches and their
limitations, which motivate us to design RINGSAMPLER.

2.1 GNN Sampling

To keep the learning cost controllable and make GNNs friendly
to GPU architectures, many GNN algorithms perform sam-
pling to construct fixed-size mini-batches for training and
inference [18, 28, 33]. Sampling bounds the computation com-
plexity and avoids load imbalance in graphs with skewed
degree distribution. Most GNN methods perform sampling
either per-node, so that each vertex selects a subset of its
neighbors at each layer [3, 5, 6], or per-layer, so that multiple
vertices are selected simultaneously for each GNN layer in a
single step [1, 14, 39]. Subgraph-based sampling techniques
have also been proposed, though these require an expensive
pre-processing step to partition the graph into clusters [4].

In this work, we focus on the GraphSAGE [10] node-wise
sampling model. GraphSAGE training proceeds in epochs
and within each epoch, nodes are divided into mini-batches.
Nodes selected for training within a mini-batch are called
target nodes. GraphSAGE recursively samples neighbors of
target nodes, uniformly at random, up to k hops (layers), to
form subgraphs for weight aggregation. The sample size per
layer is defined by the fanout parameter.

Figure 1 shows an example of the sampling process on
a 2-layer GraphSAGE model with a fanout of {3, 2} for the
first and second layer, respectively. Given target node 1, we
randomly select neighbors {2, 3, 6}, which serve as target
nodes of the next layer. Next, we randomly select up to two

Thttps://github.com/CASP-Systems-BU/RingSampler

Qixuan Chen, Yuhang Song, Melissa Martinez, and Vasiliki Kalavri

N\ V4 |

: sort and deduplicate

sort and deduplicate

M

(b) Workflow overview

(a) Input graph

Figure 1: GraphSAGE 2-hop sampling example

neighbors per target node, generating the sample {10, 14, 12,
5, 10}. The list of sampled nodes is dedupliacted in between
layers, so that target nodes are unique.

2.2 Existing GNN sampling systems

We divide existing systems into three categories, based on
where the sampling computation is executed, and we analyze
the strengths and limitations of each approach.

2.2.1 Out-of-core CPU-based systems. To handle large-scale
graphs without distributing tasks across multiple machines,
CPU-based systems such as MariusGNN [30], Ginex [25] and
GNNDDirive [16], leverage SSDs for graph storage and per-
form sampling on a single machine. They acknowledge the
overhead introduced by frequent data movement between
storage layers and propose solutions to address this issue.

Due to the nature of GNNs, a node may get repeatedly
sampled across different layers. MariusGNN mitigates this
redundancy by reusing previously sampled neighbors across
layers. However, this reuse compromises the randomness of
sampling and may affect model accuracy. On the other hand,
Ginex constructs a neighbor cache during offline preprocess-
ing, storing the neighbors of important nodes in memory.
During training, only nodes not in the cache are fetched from
the SSD. GNNDrive employs storage-efficient APIs and asyn-
chronous I/0 but it does so only during the feature retrieval
stage, while it performs neighborhood sampling in memory.

While the above approaches reduce data movement, they
still load the full neighborhood of each target node into main
memory during sampling. Since only a subset of neighbors
is actually used, this leads to unnecessary I/O.

2.2.2 GPU-based systems. Leveraging the massive paral-
lelism of modern GPUs, systems such as DGL [31] (GPU
mode), Nextdoor [15] and gSampler [9] demonstrate signifi-
cantly better performance than CPU-based sampling meth-
ods. The typical workflow of GPU-based sampling approaches
involves three steps: (i) transferring the graph data from main
memory to GPU memory, (ii) performing the sampling al-
gorithm and, (iii) copying the sample back to the CPU for

RingSampler: GNN sampling on large-scale graphs with io_uring

p
Main memory
target index

node 1 nrb offset range I1_‘32]22|...|80‘33|...|17‘ 5| i ‘
0/0]|5|9|11[12]14[16]16|17]... batch 1 Lbatch 2 batch n

0o 1|2 3 4 5 6 7 8 9 a
° Offset Storage Neighbor Storage | l Target Storage l
| Partition 1 | Partition n| |Partition1| ... |Partitionn| |Partition 1] |Partition n|
T Y y'y

...................

offset index

Disk Edge file

|—node 1nrb ——T—node 2 nrb —

neighbors| 2 [8 [6 [7 [11] 6 [8 [10[14[12] 1[4 9] 5[10]10]...]
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ..

Figure 2: RINGSAMPLER overview

downstream tasks. Additionally, techniques such as CGC
compression [35] minimize transfer costs by compressing
graph representations. Yet, GPU-based systems require the
graph structure to fit either in GPU or CPU memory, render-
ing them unsuitable for training very large graphs. Moreover,
this design creates contention for GPU resources, leading to
inefficient resource utilization. For instance, in our experi-
ments with DGL in GPU mode, we observed that DGL’s GPU
pipeline performs both sampling and feature access on the
GPU, resulting in nearly zero CPU usage during training.

2.2.3 In situ SSD-based systems. SSDs have been widely
used in disk-based and GPU-based systems as additional
storage. However, frequent data movement between SSDs
and computation memory can become a significant bottle-
neck, prompting the development of systems that perform
sampling directly on SSDs. Notable SSD-based systems in-
clude SmartSAGE [20], FlashGNN [23], and the SmartSSD-
based sampling system [29]. Despite their advantages, in situ
sampling systems rely on specific hardware characteristics,
making them challenging to adopt broadly. Further, due to
the limited compute capabilities of storage devices, they do
not perform as well as other sampling approaches, as we
demonstrate in Section 4.2.

3 GNN SAMPLING WITH I0_URING

To address the limitations of existing GNN sampling sys-
tems, we propose RINGSAMPLER, a CPU-based system that
leverages high-bandwidth SSDs and io_uring to perform
efficient sampling on larger-than-memory graphs on a sin-
gle machine. In this section, we describe how RINGSAMPLER
avoids loading entire node neighborhoods in memory by
constructing an in-memory offset index and how it effec-
tively parallelizes sampling across mini-batches to utilize the
available I/O bandwidth and achieve non-blocking execution.

HotStorage *25, July 10-11, 2025, Boston, MA, USA

3.1 System overview

Data Preprocessing. Since RINGSAMPLER is designed to
store graph data on SSDs and perform sampling on the CPU,
efficient data access is critical. To leverage io_uring’s effi-
cient random I/O, we design a hybrid data structure consist-
ing of two in-memory index structures and one on-disk edge
file. We use an in-memory target index array to store target
nodes. Given n threads, we divide the array into n batches,
with each thread independently processing its assigned batch
to ensure a balanced workload. The edge file is constructed
by sorting all edges based on their source nodes, then storing
only the destination nodes as a flat list of integers. This or-
ganization ensures that all neighbors of a given source node
are stored contiguously on disk. Alongside this, we build
an in-memory offset index, where the neighbors of node x
reside in the range [offset_index[x], offset_index[x + 1]) in
the edge file. This allows sampling to operate directly on
index ranges, as each neighbor can be uniquely identified by
its offset index rather than by its actual value.

To support efficient parallel processing, RINGSAMPLER allo-
cates three thread-local workspaces for intermediate storage
of offsets, neighbors, and target nodes. Each workspace is
partitioned such that threads access only their assigned re-
gions, avoiding contention. As a result, memory usage scales
with the number of threads but remains independent of the
total number of graph edges.

Sampling. Figure 2 illustrates the workflow of RINGSAM-
PLER, using the graph of Figure 1a to show how it performs
sampling for target node {1}. To sample neighbors for node {1}
(D, RINGSAMPLER looks up its neighborhood range [0, 5) in
the offset index (2). It then randomly selects fanout (3) offsets
from this range (in this case {0, 1, 2}) as the sampled neigh-
bors (3. Using these sampled offsets, RINGSAMPLER submits
io_uring read requests to fetch only the corresponding en-
tries—{2, 3, 6}—from the edge file and load them to memory
@ (© (®. The sampled neighbor values are then stored (7),
and a deduplication step is performed to obtain the unique
set of nodes that will be used as the target nodes for the next
sampling layer (8).

By using offset-based sampling, RINGSAMPLER avoids fetch-
ing full neighbor lists from disk (e.g., neighbors 7 and 11 are
skipped and not loaded). In real-world datasets, a node’s
neighborhood can contain hundred of thousands of neigh-
bors [27]. Thus, this strategy significantly reduces disk I/O
and eliminates unnecessary data loading, without modifying
the sampling algorithm or compromising accuracy.

Eliminating thread synchronization. Figure 3a shows
an example of a multi-threaded sampling approach, where
threads collaboratively process mini-batches, similar to Mar-
iusGNN. However, due to layer dependencies in GraphSAGE

HotStorage ’25, July 10-11, 2025, Boston, MA, USA

thread1

((threaldzqI — M L

T within
—— atch-1 ——— L patch-4 4= mini-batches
thread1 sampling donel
(— —
L batch-1 L batch-2 1 al
thread2 y | mini-batches
> X —> across threads
batch-3 batch-4 =—

layer1 Iayer§ layer3 barrier B oc!

(a) Parallelism strategy comparison

Multi-threaded

Equally distribute

o —-E—p-—b - E—p-—— —P-I—P>) Sync
L— 1/0 group 1 =4—1/0 group 2 =———— /O group ?in?l

saved
> P —> B Agync
L— /0 group 1 =—L— /O group 2 —L—— /O group 3

> — —
prepare /O submit /O store I/O block

(b) Synchronous vs. Asynchronous I/O Pipeline

Figure 3: Parallel and asynchronous design

sampling, this design forces threads to wait for one another
before proceeding to the next mini-batch, causing frequent
synchronization and poor CPU utilization.

To eliminate this synchronization overhead, RINGSAM-
PLER adopts a parallel design where mini-batches are evenly
distributed across threads. Since mini-batches are mutually
independent, threads can process their assigned batches with-
out coordination. To further enable parallelism, each thread
is assigned a dedicated pair of io_uring ring buffers, Sub-
mission Queue (SQ) for storing I/O requests and Completion
Queue (CQ) for storing I/O results.

Overlapping computation and I/0. Beyond inter-thread
synchronization, blocking can also occur because of I/O.
io_uring allows batching a group of I/O operations in a
single system call, with the group size determined by the
buffer capacity, commonly referred to as the Queue Depth.
The lifecycle of processing an I/O groups involves preparing
the I/O operation load on SQ, submitting the request, and
retrieving the result, corresponding to steps 3), @, and) in
Figure 2, respectively. In a synchronous pipeline, as shown
in Figure 3b, a significant portion of CPU resources is wasted
while waiting for the kernel to complete I/O operations.

To address this inefficiency, we leverage io_uring’s com-
pletion polling mode, which enables the CQ to continuously
poll for I/O results from the kernel without issuing addi-
tional system calls. This allows us to design an asynchronous
pipeline, shown in Figure 3b. While CQ is collecting I/O re-
sults for group-1, we simultaneously prepare I/O requests
for group-2 and load them into SQ. By the time group-2’s I/O
requests are ready, group-1’s results are already available in
the CQ, ready for processing and group-2’s I/O requests can
be submitted immediately. By overlapping I/O completion

Qixuan Chen, Yuhang Song, Melissa Martinez, and Vasiliki Kalavri

Table 1: Graphs used in the evaluation. The size columns
correspond to the edge list, in raw text and binary format.

Graph V] |[E| Raw Size (GB) Bin Size (GB)
ogbn-papers [12] 111IM 1.6B 24.1 6.8
Friendster [21] 65M 3.6B 30.1 13.5
Yahoo [27] 14B 6.6B 66.9 353
Synthetic [26] 134M 8.2B 140.8 31.7

[Z71 RingSampler [0 DGL-UVA B9 gSampler-UVA £ SmartssD
X7 DGL-CPU

EEN DGL-GPU B gSampler-GPU [T Marius

102

0}
[
= = =
E o 3 o o 1o} o}
=) o o 9 o]
8 v ? < @
[15 [
q o o o
I I I
o =====—2o ===z 2
o (cYooXokelumid] 0000 QY
100 o 00000« [sReYoJoRolmmis
N =2
ogbn-papers100M Friendster Yahoo Synthetic

Figure 4: Performance comparison across in-memory,
out-of-core, and GPU-based sampling systems.

waiting time with I/O preparation, RINGSAMPLER reduces idle
CPU time and maximizes throughput, effectively minimizing
intra-thread blocking.

4 EXPERIMENTAL EVALUATION

We compare RINGSAMPLER ’s performance with various base-
lines and evaluate its scalability under memory constraints
and increasing sampling depth, as well as its suitability for
real-time inference workloads.

4.1 Experimental setting

We conduct all experiments on a machine equipped with an
AMD EPYC (Milan) 7713P 2.0Ghz with 64 CPU cores, 256
GB of DRAM, one NVIDIA A100 80 GB GPU, and a 4 TB
Samsung SmartSSD. The system runs Ubuntu 20.04, PyTorch
2.3.1, DGL v2.3.0, and CUDA 12.1.

We use four real-world and synthetic graph datasets of
varying sizes, shown in Table 1. The size columns correspond
to the edge list only, in raw text and binary format, as node
features are not used in sampling. Unless otherwise stated,
our default configuration uses a GraphSAGE model with 3
layers, fanout of {20, 15, 10}, a mini-batch size of 1024, and
we run RINGSAMPLER with 64 threads. io_uring is set to
completion polling mode and the ring size is 512.

Baselines. We compare RINGSAMPLER with baselines from
all categories of GNN sampling approaches (cf.§ 2.2): Marius-
GNN [30], smartSSD [29], DGL, as an in-memory baseline,
and gSampler [9]. DGL-CPU refers to a configuration that per-
forms sampling on the CPU with graph data in main memory;

RingSampler: GNN sampling on large-scale graphs with io_uring

DGL-UVA and gSampler-UVA store data in CPU memory and
use Unified Virtual Addressing (UVA) to transfer data to the
GPU for sampling; and finally, DGL-GPU and gSampler-GPU
store and sample the graph in GPU memory.

4.2 Overall sampling performance

In the first experiment, we compare RINGSAMPLER’s perfor-
mance to that of baselines, across all datasets of Table 1.
We measure the execution time of the sampling phase per
epoch of training and plot average results across five epochs.
Figure 4 shows the results, where OOM signifies that the
experiment failed with an out-of-memory error.

We observe that only RINGSAMPLER and SmartSDD can
successfully complete the sampling computation on the large
graphs. Although Marius is designed to handle larger-than-
memory graphs, it fails on these datasets with an out-of-
memory error encountered during its pre-processing phase.
The FPGA-based SmartSSD system suffers from significant
overhead caused by transferring data from the SSD to FPGA
memory. Moreover, due to the limited computational power
of the FPGA compared to the CPU, its sampling performance
is 30X to 60x lower than that of RINGSAMPLER.

For small graphs, such as ogbn-papers10@Mand Friendster,

DGL-GPU and gSampler-GPU outperform all other systems,
as they can compute sampling entirely in the GPU. Interest-
ingly, though, RINGSAMPLER’s performance is competitive
with that of DGL-GPU, while it is significantly faster than all
in-memory DGL sampling approaches.

These results demonstrate that RINGSAMPLER effectively
utilizes CPU and SSD resources to achieve superior perfor-
mance on very large graphs, without relying on specialized
hardware or GPU acceleration. Further, RINGSAMPLER per-
forms as well as in-memory solutions on small graphs.

4.3 Comparison with out-of-core systems

In the next set of experiments, we take a closer look at the
performance of sampling approaches that support larger-
than-memory graphs. We first evaluate systems under mem-
ory constraints and then investigate how sampling perfor-
mance is affected as we increase the GNN layers. We use the
ogbn-papers dataset for all experiments in this section.

Performance under memory constraints. In this exper-
iment, we evaluate the performance of sampling systems
under memory constraints. In particular, we use cgroup to
limit the available memory during the experiment and mea-
sure sampling duration per epoch. Figure 5 shows the results.

Overall, RINGSAMPLER outperforms Marius by up to 18.5%
and the SmartSSD-based sampling approach by up to 53x.
With only 4 GB of memory, RINGSAMPLER completes one sam-
pling epoch of a billion-edge graph in 20.22s. Additionally,
RINGSAMPLER is the only system that can successfully sample
the graph under a 4 GB limit. This is because RINGSAMPLER

HotStorage *25, July 10-11, 2025, Boston, MA, USA

271 RingSampler E= SmartSsD 1 Marius

102

Time (s)

10*

= = = = =
o o o [o] o
S0 o o S [=l 0]
4GB 8GB 16GB 32GB 64GB Unlimited

Memory constraint

Figure 5: Sampling performance of out-of-core systems
under memory constraints (ogbn-papers)

107 H

1071 4

T
T
1
1
1
1
1
1
1
1072 § T
1
1
1
H

1073 4

—— CDF
--- P50: 1.15s, 500,000 nodes

Fraction of Nodes Sampled

1074 4
---P90: 2.07s, 900,000 nodes
10-5 4 ---- P95: 2.19s, 950,000 nodes
--- P99: 2.28s, 990,000 nodes
1
0.0 05 10 15 2.0
Time (s)

Figure 6: Latency CDF of per-request inference sam-
pling in RINGSAMPLER, on a workload of 1 million
target nodes

maintains only essential metadata in memory, such as the
target index, offset index, and temporary storage for sam-
pled neighbors. The space complexity of these auxilliary
structures depends only on the number of nodes and is inde-
pendent of the number of edges. For example, RINGSAMPLER
requires roughly the same amount of memory to perform
sampling on the Sythetic dataset, too, despite it having 5x
more edges than ogbn-papers. In contrast, the SmartSSD ap-
proach requires at least 8 GB to store its host-side in-memory
data structures. Marius has higher memory requirements
than the other systems, as it uses in-memory partitions for
both sampling and feature retrieval. To reduce I/O, Marius
partitions graph data and loads selected partitions into mem-
ory for sampling. As a result, it provides a tunable trade-off
between memory usage, sampling performance, and sam-
pling quality. Using fewer partitions improves performance
by reusing memory-resident partitions, but this comes at
the cost of reduced sampling randomness, which can affect
training accuracy [22].

4.4 On-demand sampling performance

In this section, we evaluate the performance of RINGSAMPLER
in the context of GNN inference and demonstrate its potential

HotStorage ’25, July 10-11, 2025, Boston, MA, USA

for real-time, on-demand sampling. To simulate a streaming
inference scenario, we select 1 million target nodes from
the ogbn-papers dataset. We set the mini-batch size to 1,
simulating a scenario where individual sampling requests
arrive to the system by concurrent clients. We keep all other
configuration parameters to their default values.

To assess latency and throughput, we log the timestamps
at which each node’s sampling is completed. Figure 6 plots
a latency CDF of the sampling requests. We observe that
RINGSAMPLER maintains low and predictable latency even
under sustained load. For example, 50% of sampling requests
complete within 1.15s, and 90% within 2.07s. The narrow
gap between the median and tail latencies demonstrates
RINGSAMPLER ’s ability to handle real-time sampling requests
efficiently and consistently, making it well-suited for latency-
sensitive inference tasks on large-scale graphs. However, a
smart caching strategy would be needed to further improve
responsiveness, making RINGSAMPLER fully inference-ready.

5 DISCUSSION

Rationale for using io_uring. We chose io_uring over
alternatives such as libaio [8] and SPDK [34] based on
insights from a recent systematic study [7], which compre-
hensively evaluates all three APIs. io_uring offers superior
support for batched and asynchronous I/O via its ring-based
interface, improving efficiency over libaio. Although SPDK
offers better performance, it relies on user-space drivers
and specialized configurations, limiting portability. In con-
trast, io_uring strikes the best balance among performance,
portability, and ease of use—making it ideal for our system.

End-to-end implementation. RINGSAMPLER can be seam-
lessly integrated into existing GNN training frameworks,
such as DGL, with minimal modifications. DGL uses a Dat-
aLoader to perform sampling and generate subgraphs, which
are then passed to the GPU for feature retrieval and model
training. To integrate RingSampler, we can implement a cus-
tom DataLoader that invokes our CPU-based sampler to
prefetch subgraphs asynchronously and yield them as they
become ready. These sampled subgraphs can then be passed
directly to DGL’s GPU-accelerated feature retrieval pipeline.
This design enables an efficient end-to-end system that de-
couples sampling and feature access across CPU and GPU,
allowing both to operate in parallel.

Limitations. RINGSAMPLER currently supports only node-
wise GNN sampling, but we are planning to extend it to
layer-wise sampling [1, 40] too. In addition, the full potential
of io_uring has yet to be fully leveraged. We plan to inte-
grate features such as kernel-side polling mode, which could
further reduce I/O latency in future versions of RINGSAM-
PLER. Our approach can also be combined with other on-disk

Qixuan Chen, Yuhang Song, Melissa Martinez, and Vasiliki Kalavri

sampling techniques, such as in-situ sampling, to enable
heterogeneous execution that leverages both CPU and SSD
compute capabilities, enhancing overall system efficiency.

6 CONCLUSION

We presented RINGSAMPLER, a novel CPU-based sampling

system built on io_uring, that addresses out-of-core train-
ing challenges in large-scale GNNs. RINGSAMPLER minimizes

unnecessary data movement from disk to CPU memory and

exhibits excellent sampling performance through a parallel

and asynchronous design. Unlike prior approaches that re-
quire loading graph data into memory for sampling, RINGSAM-
PLER is the first to combine disk and CPU by storing graph

data on disk and using io_uring for efficient random ac-
cess. This enables in-memory-like sampling while support-
ing graphs larger than memory.

7 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
feedback. This work was supported by the National Science
Foundation under Grant No. 2237193.

REFERENCES

[1] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling. In Interna-
tional Conference on Learning Representations. https://openreview.net/
forum?id=rytstx WAW

[2] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph
Convolutional Networks with Variance Reduction. In Proceedings of
the 35th International Conference on Machine Learning (Proceedings of
Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.),
Vol. 80. PMLR, 942-950. https://proceedings.mlr.press/v80/chen18p.
html

[3] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph

Convolutional Networks with Variance Reduction. In International

Conference on Machine Learning. PMLR, 942-950.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-

Jui Hsieh. 2019. Cluster-gen: An efficient algorithm for training deep

and large graph convolutional networks. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. 257-266.

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi.

2020. Minimal variance sampling with provable guarantees for fast

training of graph neural networks. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Min-

ing. 1393-1403.

Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song.

2018. Learning steady-states of iterative algorithms over graphs. In

International conference on machine learning. PMLR, 1106-1114.

Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and

Animesh Trivedi. 2022. Understanding modern storage APIs: a sys-

tematic study of libaio, SPDK, and io_uring. In Proceedings of the 15th

ACM International Conference on Systems and Storage (Haifa, Israel)

(SYSTOR °22). Association for Computing Machinery, New York, NY,

USA, 120-127. https://doi.org/10.1145/3534056.3534945

Daniel Ehrenberg. [n.d.]. Littledan/Linux-Aio: How to use the linux

AIO feature. https://github.com/littledan/linux-aio?tab=readme-ov-

[4

flan)

[5

—

[6

—

[7

—

8

—

https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
https://proceedings.mlr.press/v80/chen18p.html
https://proceedings.mlr.press/v80/chen18p.html
https://doi.org/10.1145/3534056.3534945
https://github.com/littledan/linux-aio?tab=readme-ov-file
https://github.com/littledan/linux-aio?tab=readme-ov-file

RingSampler: GNN sampling on large-scale graphs with io_uring

[10

[11

(12

(13

(14

(15

(16

[17

(18

(19

[20

[21

[22

-

=

—

—

-

=

[

=

]

=

-

[t

]
]

file

Ping Gong, Renjie Liu, Zunyao Mao, Zhenkun Cai, Xiao Yan, Cheng Li,
Minjie Wang, and Zhuozhao Li. 2023. gSampler: General and Efficient
GPU-based Graph Sampling for Graph Learning. In Proceedings of the
29th Symposium on Operating Systems Principles (Koblenz, Germany)
(SOSP ’23). Association for Computing Machinery, New York, NY, USA,
562-578. https://doi.org/10.1145/3600006.3613168

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Repre-
sentation Learning on Large Graphs. In Advances in Neural Information
Processing Systems, 1. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/
file/5dd9db5e033da9c6fb5ba83c7a7ebead-Paper.pdf

William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive
Representation Learning on Large Graphs. arXiv:cs.SI/1706.02216
https://arxiv.org/abs/1706.02216

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph
Benchmark: Datasets for Machine Learning on Graphs. arXiv preprint
arXiv:2005.00687 (2020).

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018.
Adaptive Sampling Towards Fast Graph Representation Learning. In
Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf
Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018.
Adaptive Sampling Towards Fast Graph Representation Learning.
4558-4567.

Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini.
2021. Accelerating graph sampling for graph machine learning using
GPUs. In Proceedings of the Sixteenth European Conference on Computer
Systems (Online Event, United Kingdom) (EuroSys "21). Association for
Computing Machinery, New York, NY, USA, 311-326. https://doi.org/
10.1145/3447786.3456244

Qisheng Jiang, Lei Jia, and Chundong Wang. 2024. GNNDrive: Re-
ducing Memory Contention and I/O Congestion for Disk-based GNN
Training. In Proceedings of the 53rd International Conference on Parallel
Processing (Gotland, Sweden) (ICPP °24). Association for Computing
Machinery, New York, NY, USA, 650-659. https://doi.org/10.1145/
3673038.3673063

Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Il-
iopoulos, Tao B. Schardl, Charles E. Leiserson, and Jie Chen. 2022.
Accelerating Training and Inference of Graph Neural Networks with
Fast Sampling and Pipelining. arXiv:cs.LG/2110.08450 https://arxiv.
org/abs/2110.08450

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. 2017. On Large-Batch
Training for Deep Learning: Generalization Gap and Sharp Minima.
arXiv:cs.LG/1609.04836 https://arxiv.org/abs/1609.04836

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification
with Graph Convolutional Networks. arXiv:cs.LG/1609.02907 https:
//arxiv.org/abs/1609.02907

Yunjae Lee, Jinha Chung, and Minsoo Rhu. 2022. SmartSAGE: train-
ing large-scale graph neural networks using in-storage processing
architectures. In Proceedings of the 49th Annual International Sym-
posium on Computer Architecture (New York, New York) (ISCA 22).
Association for Computing Machinery, New York, NY, USA, 932-945.
https://doi.org/10.1145/3470496.3527391

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large

Network Dataset Collection. http://snap.stanford.edu/data.
Renjie Liu, Yichuan Wang, Xiao Yan, Haitian Jiang, Zhenkun Cai,

Minjie Wang, Bo Tang, and Jinyang Li. 2025. DiskGNN: Bridging

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

HotStorage *25, July 10-11, 2025, Boston, MA, USA

/O Efficiency and Model Accuracy for Out-of-Core GNN Training.
Proc. ACM Manag. Data 3, 1, Article 34 (Feb. 2025), 27 pages. https:
//doi.org/10.1145/3709738

Fuping Niu, Jianhui Yue, Jiangqiu Shen, Xiaofei Liao, and Hai Jin. 2024.
FlashGNN: An In-SSD Accelerator for GNN Training. In 2024 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 361-378. https://doi.org/10.1109/HPCA57654.2024.00035
Jeongmin Brian Park, Vikram Sharma Mailthody, Zaid Qureshi, and
Wen-mei Hwu. 2024. Accelerating Sampling and Aggregation Oper-
ations in GNN Frameworks with GPU Initiated Direct Storage Ac-
cesses. Proc. VLDB Endow. 17, 6 (may 2024), 1227-1240. https:
//doi.org/10.14778/3648160.3648166

Yeonhong Park, Sunhong Min, and Jae W. Lee. 2022. Ginex: SSD-
enabled billion-scale graph neural network training on a single ma-
chine via provably optimal in-memory caching. Proc. VLDB Endow. 15,
11 (jul 2022), 2626-2639. https://doi.org/10.14778/3551793.3551819
RapidsAtHKUST. 2019. Graph500KroneckerGraphGenerator. https:
//github.com/RapidsAtHKUST/Graph500KroneckerGraphGenerator.
Yahoo Research. 2002. WebScope Graph and Social Data. https://
webscope.sandbox.yahoo.com/catalog.php?datatype=g. Last access:
March 2025.

Marco Serafini and Hui Guan. 2021. Scalable Graph Neural Network
Training: The Case for Sampling. ACM SIGOPS Operating Systems
Review 55, 1 (2021), 68-76.

Yuhang Song, Po Hao Chen, Yuchen Lu, Naima Abrar, and Vasiliki
Kalavri. 2024. In situ neighborhood sampling for large-scale GNN
training. In Proceedings of the 20th International Workshop on Data
Management on New Hardware (Santiago, AA, Chile) (DaMoN °24).
Association for Computing Machinery, New York, NY, USA, Article
11, 5 pages. https://doi.org/10.1145/3662010.3663443

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2023. MariusGNN: Resource-Efficient Out-of-Core
Training of Graph Neural Networks. In Proceedings of the Eighteenth
European Conference on Computer Systems (Rome, Italy) (EuroSys °23).
Association for Computing Machinery, New York, NY, USA, 144-161.
https://doi.org/10.1145/3552326.3567501

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep Graph Li-
brary: A Graph-Centric, Highly-Performant Package for Graph Neural
Networks. arXiv preprint arXiv:1909.01315 (2019).

Yuyue Wang, Xiurui Pan, Yuda An, Jie Zhang, and Glenn Reinman.
2024. BeaconGNN: Large-Scale GNN Acceleration with Out-of-Order
Streaming In-Storage Computing. In 2024 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). 330-344.
https://doi.org/10.1109/HPCA57654.2024.00033

D. Randall Wilson and Tony R. Martinez. 2003. The general inefficiency
of batch training for gradient descent learning. Neural Netw. 16, 10
(dec 2003), 1429-1451. https://doi.org/10.1016/S0893-6080(03)00138-2
Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Chang-
peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma,
and Luse E. Paul. 2017. SPDK: A Development Kit to Build High
Performance Storage Applications. In 2017 IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom). 154-161.
https://doi.org/10.1109/CloudCom.2017.14

Hongbo Yin, Yingxia Shao, Xupeng Miao, Yawen Li, and Bin Cui. 2022.
Scalable Graph Sampling on GPUs with Compressed Graph (CIKM °22).
Association for Computing Machinery, New York, NY, USA, 2383-2392.
https://doi.org/10.1145/3511808.3557443

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.
Hamilton, and Jure Leskovec. 2018. Graph Convolutional Neural

https://github.com/littledan/linux-aio?tab=readme-ov-file
https://doi.org/10.1145/3600006.3613168
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://arxiv.org/abs/cs.SI/1706.02216
https://arxiv.org/abs/1706.02216
https://proceedings.neurips.cc/paper_files/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf
https://doi.org/10.1145/3447786.3456244
https://doi.org/10.1145/3447786.3456244
https://doi.org/10.1145/3673038.3673063
https://doi.org/10.1145/3673038.3673063
https://arxiv.org/abs/cs.LG/2110.08450
https://arxiv.org/abs/2110.08450
https://arxiv.org/abs/2110.08450
https://arxiv.org/abs/cs.LG/1609.04836
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/cs.LG/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.1145/3470496.3527391
http://snap.stanford.edu/data
https://doi.org/10.1145/3709738
https://doi.org/10.1145/3709738
https://doi.org/10.1109/HPCA57654.2024.00035
https://doi.org/10.14778/3648160.3648166
https://doi.org/10.14778/3648160.3648166
https://doi.org/10.14778/3551793.3551819
https://github.com/RapidsAtHKUST/Graph500KroneckerGraphGenerator
https://github.com/RapidsAtHKUST/Graph500KroneckerGraphGenerator
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
https://doi.org/10.1145/3662010.3663443
https://doi.org/10.1145/3552326.3567501
https://doi.org/10.1109/HPCA57654.2024.00033
https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/10.1109/CloudCom.2017.14
https://doi.org/10.1145/3511808.3557443

HotStorage ’25, July 10-11, 2025, Boston, MA, USA

(37

]

Networks for Web-Scale Recommender Systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (London, United Kingdom) (KDD ’18). Association for
Computing Machinery, New York, NY, USA, 974-983. https://doi.org/
10.1145/3219819.3219890

Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph
Neural Networks. arXiv:cs.LG/1802.09691 https://arxiv.org/abs/1802.
09691

[38] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. 2020.

[39]

[40]

Qixuan Chen, Yuhang Song, Melissa Martinez, and Vasiliki Kalavri

Graph neural networks: A review of methods and applications. A
Open 1 (2020), 57-81. https://doi.org/10.1016/j.aiopen.2021.01.001
Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quan-
quan Gu. 2019. Layer-dependent importance sampling for training
deep and large graph convolutional networks. Advances in neural
information processing systems 32 (2019).

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun,
and Quanquan Gu. 2019. Layer-Dependent Importance Sam-
pling for Training Deep and Large Graph Convolutional Networks.
arXiv:cs.LG/1911.07323 https://arxiv.org/abs/1911.07323

https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://arxiv.org/abs/cs.LG/1802.09691
https://arxiv.org/abs/1802.09691
https://arxiv.org/abs/1802.09691
https://doi.org/10.1016/j.aiopen.2021.01.001
https://arxiv.org/abs/cs.LG/1911.07323
https://arxiv.org/abs/1911.07323

RingSampler: GNN sampling on large-scale graphs with io_uring

771 RingSampler == SmartSSD ===:] Marius

55.2x i

5 =
10 65.8x 01 =
G 56.2x o) —
v 10! .5x —
= —
.8x —
100 55 —

l—ho.p” 2—ho.p. . 3—ho.p. . 4—ho-p. -
Figure 7: Sampling performance of out-of-core systems
as the number of GNN layers increases (ogbn-papers)

A ADDITIONAL EXPERIMENTAL
RESULTS

A.1 Effect of sampling layers

We also evaluate how sampling performance is affected, as
we increase the number of GNN layers, without any memory
restrictions. In the GraphSAGE algorithm, the number of
sampled neighbors increases exponentially with each addi-
tional layer. To assess scalability, we run experiments with
different fanout configurations: [20], [20, 15], [20, 15, 10],
and [20, 15, 10, 5], corresponding to 1-hop through 4-hop
sampling.

In Figure 7, RINGSAMPLER consistently outperforms SmartSSD

and Marius, presenting both lower overall sampling time,
and a slower growth rate compared to the other disk-based
systems. Specifically, RINGSAMPLER achieves over 55x speedup
over SmartSSD across all four hops, and outperforms Marius
by an increasingly wider margin—from 4.8x at 1-hop to
31.3% at 4-hop. While SmartSSD exhibits a growth rate sim-
ilar to RINGSAMPLER as the number of layers increases, its
baseline performance remains substantially lower. In con-
trast, Marius suffers from a steep rise in sampling time as
the number of layers grows. These results demonstrate that
RINGSAMPLER not only delivers the best performance across
all layer depths but also offers superior scalability, making it
adaptable to varying sampling requirements.

A.2 RINGSAMPLER scalability

To evaluate the scalability and effectiveness of RINGSAMPLER
’s multi-threaded design, we measure sampling performance
per epoch while varying the number of threads, keeping
all other configurations at their default values. As shown
in Figure 8, when memory is not constrained, the sampling
time decreases almost linearly with the number of threads,
up to the maximum number of available CPU cores. This
indicates that RINGSAMPLER efficiently utilizes multi-core

HotStorage *25, July 10-11, 2025, Boston, MA, USA

43.00
= Unlimited memory
[4GB Memory

32

Number of Threads

Figure 8: Scalability of RINGSAMPLER sampling over
one epoch with varying number of threads

CPU resources, with minimal contention or synchronization
overhead.

Interestingly, when memory is constrained to 4GB (the
minimum required for RINGSAMPLER to run with 64 threads),
we observe that performance actually peaks at 32 threads.
This is because memory usage in RINGSAMPLER scales with
the number of threads. At 32 threads, there is still sufficient
memory available to cache neighbor data, reducing I/O over-
head. However, with 64 threads, nearly all available mem-
ory is consumed by the two index structures and the three
workspaces, leaving little room for caching and resulting in
more frequent disk reads.

This result also indicates that the minimum memory re-
quirement of RINGSAMPLER can be further reduced when
using fewer threads, without sacrificing performance. These
findings highlight RINGSAMPLER ’s flexibility and scalabil-
ity, making it a practical solution for resource-constrained
environments as well as large-scale graph sampling tasks.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 GNN Sampling
	2.2 Existing GNN sampling systems

	3 GNN Sampling with io_uring
	3.1 System overview

	4 Experimental evaluation
	4.1 Experimental setting
	4.2 Overall sampling performance
	4.3 Comparison with out-of-core systems
	4.4 On-demand sampling performance

	5 Discussion
	6 Conclusion
	7 Acknowledgments
	References
	A Additional experimental results
	A.1 Effect of sampling layers
	A.2 RingSampler scalability

